Toward a Biology Worthy of Life > Evolution and the Illusion of Randomness > Brief excerpt
A project by Stephen L. Talbott

Mutations are products of the organism’s activity

As for genetic mutations specifically, the crucial point was already made by Oxford University biophysicist Norman Cook in 1977: “Biological intervention through enzymes and enzyme systems is the principal mechanism of in vivo mutation.” Biologists commonly interpret such mutations as random errors in vital processes such as DNA replication, but “if . . . changes in the genetic material are indeed mediated by other cellular molecules, then the idea of ‘randomness’ lacks all but the most trivial descriptive meaning, referring only to our knowledge of the mutation event” (Cook 1977). Furthermore, as British radiologist B. A. Bridges pointed out: even studies of radiation-induced mutation in bacteria have shown that cellular repair systems are “necessary for nearly all of the mutagenic effect of ultra-violet and around 90 percent of that of ionizing radiation” (Bridges 1969).

That is, outcomes depend at least in part on what the organism does with the influences impinging upon it. You might think that radiation mostly causes very local alterations in DNA, corresponding to the immediate location of damage. Yet the great majority of radiation-induced mutations involve large regions of DNA, often encompassing more than an entire gene spanning thousands of nucleotide base pairs, or letters, of the genetic sequence (Elespuru and Sankaranarayanan 2006). The organism making such changes is apparently prepared to respond as best it can and in its own way when it engages these potentially harmful elements of its environment.

bullet Locate this passage inEvolution and the Illusion of Randomness